BEGIN:VCARD VERSION:4.0 ORG:Vicarious PHOTO;ENCODING=b;TYPE=image/png:iVBORw0KGgoAAAANSUhEUgAAAPoAAAB9CAYAAACLWX5dAAAMY2lDQ1BJQ0MgUHJvZmlsZQAASImVlwdYU8kWgOeWVBICBCIgJfQmitQAUkJoEQSkCqISkkBCiTEhqNjRZRVcu4hiWdFVEUVXV0DWgohrXRS7a1ksqCjrYsGGypuQgK6+8r3zfXPvnzNnzpxzMnPvHQAY7QK5PA/VAyBfVqCIjwhhj0tNY5MeABKgAgqwA7oCoVLOjYuLBlAG7v+U11cBor5fclX7+rb/v4qBSKwUAoCkQ84UKYX5kJsAwIuFckUBAMRQqLeZWiBXswSyoQIGCHmmmrM1vEzNmRre2m+TGM+D3AAAmSYQKLIB0G2BenahMBv60X0A2U0mksoAYBhCDhRKBCLIiZCH5edPVvNcyI7QXg55B2RO5hc+s//hP3PQv0CQPciavPqFHCpVyvME0//P0vxvyc9TDcxhDxtNooiMV+cPa3g9d3KUmmmQu2SZMbHqWkN+KxVp6g4ASpWoIpM09qiZUMmD9QMsyG4iQWgUZDPI4bK8mGitPjNLGs6HDFcLOk1awE/Ujl0oVoYlaH2uV0yOjx3gLAWPqx1bK1D0z6u2b1HlJnG1/q9LxPwB/6+KJIkpkKkAYNRCaXIMZF3IhsrchCiNDWZdJOHFDNgoVPHq+G0hc8SyiBCNfyw9SxEer7WX5ysH8sVKJFJ+jJYrCiSJkZr6YDuFgv74jSHXiWXcpAE/YuW46IFcROLQME3uWKtYlqTNF7sjLwiJ147tlufFae1xsjgvQq23hmyqLEzQjsVHFcDFqfGPR8sL4hI1ceIZOYLRcZp48EIQDXggFLCBCrZMMBnkAGlrV30X/KXpCQcCoADZQAxctZqBESn9PTJ4TQBF4C9IYqAcHBfS3ysGhVD/cVCrubqCrP7ewv4RueAh5HwQBfLgb1X/KNngbMngAdRIv5ldCGPNg03d962OCzXRWo1qwC+bMWBJDCOGEiOJ4UQn3BQPxP3xaHgNhs0d5+C+A9F+tic8JLQR7hGuENoJNyZJixVfxTIGtEP/4dqMM7/MGLeHPr3wEDwAeoeecRZuClxxTzgPFw+CM3tBLU8btzp39r/JczCDL2qutaO4UVDKEEowxfHrkbrOul6DXtQV/bI+mlgzB6vKG+z5en7eF3UWwXvU15bYQmw/dhI7hp3GDmH1gI0dxRqwc9hhNQ+uoQf9a2hgtvj+eHKhH+k38wm0c6orqXSrcet0+6DtAwXiaQXqDcabLJ+ukGZLCthc+BYQs/ky4fBhbHc3dzcA1O8UzWPqJav/XYGwznzW5VUB4KOC+2fuZ53wIwANpQDob/iss/eBWwiOPsIQqhSFGh2uvhDg04ABd5QJsAA2wBFm5A68gT8IBmFgNIgFiSAVTIR1lsD1rABTwUwwD5SAMrAMrAbrwCawBewAu8E+UA8OgWPgN3AWXABXwE24fjrAU9ANXoNeBEFICB1hIiaIJWKHuCDuCAcJRMKQaCQeSUUykGxEhqiQmch8pAxZgaxDNiPVyM/IQeQYchppQ24gd5FO5AXyHsVQGmqImqP26AiUg3LRKDQRnYBmo1PQInQBugStQKvQXWgdegw9i15B29GnaA8GMB2MhVlhrhgH42GxWBqWhSmw2VgpVo5VYbVYI/ynL2HtWBf2DifiTJyNu8I1HIkn4UJ8Cj4bX4yvw3fgdXgLfgm/i3fjnwh0ghnBheBH4BPGEbIJUwklhHLCNsIBwgm4mzoIr4lEIovoQPSBuzGVmEOcQVxM3EDcQ2withHvE3tIJJIJyYUUQIolCUgFpBLSWtIu0lHSRVIH6S1Zh2xJdieHk9PIMnIxuZy8k3yEfJH8iNxL0aPYUfwosRQRZTplKWUrpZFyntJB6aXqUx2oAdREag51HrWCWks9Qb1Ffamjo2Ot46szVkeqM1enQmevzimduzrvaAY0ZxqPlk5T0ZbQttOaaDdoL+l0uj09mJ5GL6AvoVfTj9Pv0N/qMnWH6/J1RbpzdCt163Qv6j5jUBh2DC5jIqOIUc7YzzjP6NKj6Nnr8fQEerP1KvUO6l3T69Fn6o/Uj9XP11+sv1P/tP5jA5KBvUGYgchggcEWg+MG95kY04bJYwqZ85lbmSeYHYZEQwdDvmGOYZnhbsNWw24jAyNPo2SjaUaVRoeN2lkYy57FZ+WxlrL2sa6y3g8xH8IdIh6yaEjtkItD3hgPNQ42FhuXGu8xvmL83oRtEmaSa7LcpN7ktilu6mw61nSq6UbTE6ZdQw2H+g8VDi0dum/oH2aombNZvNkMsy1m58x6zC3MI8zl5mvNj5t3WbAsgi1yLFZZHLHotGRaBlpKLVdZHrV8wjZic9l57Ap2C7vbyswq0kpltdmq1arX2sE6ybrYeo/1bRuqDccmy2aVTbNNt62l7RjbmbY1tn/YUew4dhK7NXYn7d7YO9in2H9vX2//2MHYge9Q5FDjcMuR7hjkOMWxyvGyE9GJ45TrtMHpgjPq7OUsca50Pu+Cuni7SF02uLQNIwzzHSYbVjXsmivNleta6Frjenc4a3j08OLh9cOfjbAdkTZi+YiTIz65ebnluW11uznSYOTokcUjG0e+cHd2F7pXul/2oHuEe8zxaPB47uniKfbc6Hndi+k1xut7r2avj94+3grvWu9OH1ufDJ/1Ptc4hpw4zmLOKV+Cb4jvHN9Dvu/8vP0K/Pb5/e3v6p/rv9P/8SiHUeJRW0fdD7AOEARsDmgPZAdmBP4Y2B5kFSQIqgq6F2wTLAreFvyI68TN4e7iPgtxC1GEHAh5w/PjzeI1hWKhEaGloa1hBmFJYevC7oRbh2eH14R3R3hFzIhoiiRERkUuj7zGN+cL+dX87tE+o2eNbomiRSVErYu6F+0crYhuHIOOGT1m5ZhbMXYxspj6WBDLj10ZezvOIW5K3K9jiWPjxlaOfRg/Mn5m/MkEZsKkhJ0JrxNDEpcm3kxyTFIlNSczktOTq5PfpISmrEhpHzdi3KxxZ1NNU6WpDWmktOS0bWk948PGrx7fke6VXpJ+dYLDhGkTTk80nZg38fAkxiTBpP0ZhIyUjJ0ZHwSxgipBTyY/c31mt5AnXCN8KgoWrRJ1igPEK8SPsgKyVmQ9zg7IXpndKQmSlEu6pDzpOunznMicTTlvcmNzt+f25aXk7ckn52fkH5QZyHJlLZMtJk+b3CZ3kZfI26f4TVk9pVsRpdimRJQTlA0FhvDj/ZzKUfWd6m5hYGFl4dupyVP3T9OfJpt2brrz9EXTHxWFF/00A58hnNE802rmvJl3Z3FnbZ6NzM6c3TzHZs6COR1zI+bumEedlzvv92K34hXFr+anzG9cYL5g7oL730V8V1OiW6Ioufa9//ebFuILpQtbF3ksWrvoU6mo9EyZW1l52YfFwsVnfhj5Q8UPfUuylrQu9V66cRlxmWzZ1eVBy3es0F9RtOL+yjEr61axV5WuerV60urT5Z7lm9ZQ16jWtFdEVzSstV27bO2HdZJ1VypDKvesN1u/aP2bDaINFzcGb6zdZL6pbNP7H6U/Xt8csbmuyr6qfAtxS+GWh1uTt578ifNT9TbTbWXbPm6XbW/fEb+jpdqnunqn2c6lNWiNqqZzV/quC7tDdzfUutZu3sPaU7YX7FXtffJzxs9X90Xta97P2V/7i90v6w8wD5TWIXXT67rrJfXtDakNbQdHH2xu9G888OvwX7cfsjpUedjo8NIj1CMLjvQdLTra0yRv6jqWfex+86Tmm8fHHb/cMral9UTUiVO/hf92/CT35NFTAacOnfY7ffAM50z9We+zdee8zh343ev3A63erXXnfc43XPC90Ng2qu3IxaCLxy6FXvrtMv/y2SsxV9quJl29fi39Wvt10fXHN/JuPP+j8I/em3NvEW6V3ta7XX7H7E7Vn05/7mn3bj98N/TuuXsJ927eF95/+kD54EPHgof0h+WPLB9VP3Z/fKgzvPPCk/FPOp7Kn/Z2lfyl/9f6Z47Pfvk7+O9z3eO6O54rnve9WPzS5OX2V56vmnvieu68zn/d+6b0rcnbHe84706+T3n/qHfqB9KHio9OHxs/RX261Zff1ycXKAT9nwIYbGhWFgAvtgNATwWAeQEeE8Zrznz9gmjOqf0E/hNrzoX94g3AliYAEucCEAvbRtjsYWMEA6D+VE8MBqiHx2DTijLLw13jiwZPPIS3fX0vzQEgNQLwUdHX17uhr+8jPKNiNwBomqI5a6qFCM8GP/qq6YqnIfhaNOfQL3L8+g7UEXiCr+//Aq7XhLgqWVxlAAAAbGVYSWZNTQAqAAAACAAEARoABQAAAAEAAAA+ARsABQAAAAEAAABGASgAAwAAAAEAAgAAh2kABAAAAAEAAABOAAAAAAAAAyAAAAABAAADIAAAAAEAAqACAAQAAAABAAAA+qADAAQAAAABAAAAfQAAAABpifXFAAAACXBIWXMAAHsIAAB7CAF4JB2hAAAV9klEQVR4Ae2dCbxN1R7Hl7rIVGaiuJJ5LGR4RKISKplJbsYKr8HTSxrkVSLFM7znhgyF8mQKoUjGSKXIkMzCLS7RSMNbv3Vb57PvuXufs6cz3Ht//8+Hc+5ee6+19nfv/xr+//9aRwgKCZAACZAACZAACZAACZAACZAACZAACZAACZAACZAACZAACZAACZAACZAACZAACZAACZAACZAACZAACZAACZAACZAACZAACZAACZAACZAACZAACZAACZAACZAACZAACZAACZAACZAACZAACZAACZAACZAACZAACZAACZAACZAACZAACZAACZAACZAACZAACZAACZAACZAACZAACZAACZAACZAACZAACZAACZAACZAACZAACfhCIMefUnzJiZmQAAnELYFL4rZmrBgJkIBvBKjovqFkRiQQvwSo6PH7bFgzEvCNABXdN5TMiATil0C2V/TffvtN/Pzzz/H7hFgzEvCBQLZX9HfeWSKee+5fAgpPIYGsSiBbK/r3338v5syZIz799FMxZcqrWfUZ875IQGRrRZ81a5b44Ycf1GuwZMkSsW3bNr4SJJAlCWRbRT948KBYseLddA8VvTrjh9Ih4R9ZhEC2VfTk5GTxxx9/pHuMR44cETt37kh3jH+QQFYgkC0VfdOmjeLzz7ebPr/du3ebHudBEsjMBBLsVB4v/9SpU0Vq6mk7p8f0nJw5c4oXXxwlChcubFqPixcvqnsxTZQHL1y4aJXE4ySQaQnYUvR58+aJXbu+zBQ32b59B0slxw0sXLhQnDhxwvJeypVLtExjAglkVgK2hu4VK1bIFPdXsGBB0bVrV8u6pqamirfeetMyvWjRoqJevRss05lAApmVgC1Fv+uudiF7yXi5+Z49k0S+fPksqzNz5gzx008/WaYnJSWJXLlyWaYzgQQyKwFbip4nTx4BJYhnKV++vLjlllssq7hv3z7x/vvvW6ZXqlRJNG9+s2U6E0ggMxOwpei4wRYtWooKFeJ3CN+///3ikkvMbwe+8eTkyRncafrB5ciRQ+B6fMZK4Na7557u4t57ewg0StlR9u37SvTs2VN0796Nbk6fXwBzzTApJB6UwaRa6lCTJk1EjRo1rJLFunXrxJdfWhsTb7rpJlGlShXL66ORsHjxEnH69Gnx3XffiXffXR6NIuOujGXLlolvv02R3p1UsXTp0rirX2aukC2ru77BatWqiRtvvFF8+OGH+pDjTwyRn3rqaQE3mB2xE6mWN29ey6x+/fVX8dpr0yzTL7vsMnHffb0s06OVAIPnhg3rVXHXXhu/I6dI8qhQoaJYuXLlXwyujWRR2S5vR4oOOr169RYfffSRgAK5ESwkufzyy20rupsyjNfMnz9f9hLfGg+l+96xYycBa3uspUOHjqJ8+WvV9KN27dqxrk5Mym/durW46qqr1ErC66+/PiZ1yKqF2h66awDFixcXHTp00H86/jx58qRYtGiR4+vcXIBh8Pz5/7O8FPfSvn17y/RoJmBqhJc7uyq5Zl2rVi1Rp06dmNpLdF2y0qdjRcfNo/cpWrSYaw5vvjlXnDlzxvX1di+cPv018csvv1ie3rt3b5E7d27LdCaQQFYh4ErRMa/t1cv9vBa+bPi0Iym7d+8Sa9eutSyievXqokmTGy3TmUACWYmAK0UHgGbNmnmyVL/33nvi66+/jgjLNHdasuWSU7jh+vfvz+FhROgz03gk4NgYp29Cu9seeeRhS4XS55p9YokofNujR7/ku8KtXr1a7N2716xYdaxly5Yiq1i20ahhee3Ro0fF+fPnpTEvhyhQ4HJl1Lr66qsdsT127Jjktke5t4TIIadnRUTlylXElVdeacnSaQK27MK0De8PFh5ZxT44yffChQtiz549ksNh8eOPP0pDby5RsmQJ2RFVFYUKFXKSVcTOxfuOju3AgQPi3Lnv1X3j/suVu0YkJiY6ek5uKula0VEYXGU333xzyIizUJXauXOnWL9+vXLZhTrPSRo2epwxY7rlJXDFIVTWi7z00ktqkU/dunXFgAEDHWW1efNm8eqryeolHzPm5cADPnXqlBgy5B8qr3Hj/i2uuOKKkPlCqRcseFtgZAT/u5ngJcfICwt9ihQpYnaKOrZx4wa1pRZeQjOBwiCQp3bt61Ty3LlzxapVK1XeZiy3bNkiJk/+r6hYsaIYOvQJdc3+/ftVGZ98si3gscHahNmz5wSUHUo6cOAAdf7IkS9KZS1pVp3AsXPnzgnYe1atWqUUPJDw1xc0IjBuduvWTVSrVj04Od3faDD79esnLf4XxeOPD1XvdroTLP5Ap/LGG6+LsmUTxfDhw03PWrv2AzlVnSlgiDYTKHzz5s1Fu3Z3RyzU3JOio9JJSfeJjRs3ut5Jddq0aaJ+/fq+GcXmzXvL8sVHfbt06eq5lUd916xZrXy+3bvfI/DC2pUlSxarB45wW/RqWn7//ffAixC8IYY+R3+isRg3bqzsGc6pQ3hR4IMuVKigjP77U/XIBw7sV59YrYf6derUWV8e+ISh8pVXXlaNLQ7C9lKzZk01GkhIyCmvPy0j1HYK2DuGDh0qsOahb9++qkfGS6vLD2T41xfki/QiRdLcltjJZ9KkScpthnvOkyevXA78q7j00ksDSo5Lcd9aGcJt1vnZZ5/J0eAocfbsWVUqFK1KlcqygSwoG5JfxOHDh1XdsR8gzm3b9g6lyCjTSlJSTgosY8YIwa7A3oQ6589fwPSS2bPfkA3BGyoNYdpoeAoVKqzu9dSp7+RIZK/s6fdJ79B8xSJSMR2eFR09BV4it8Y1REKhZ+ratZspKCcHAXzBggWWl5QqVUq+rHdZpttNaNSokeoh0ZOiN+nUqZOtS7/55hu54cXn6gVv1aqVrWuCT4LSjB8/Xk2XEJKMhva6665L12joa9BDr1ixwjR0GXEQTz45TEUMYiEPGsA777xTBAcfoafDXnrooRctWqjKDaeEunx8btiwQdW3WLFiaiSFRhILj6BQx48fN55q+zsauhdeeF41HFWrVpP2ln5y9FApw/WI2Zg7d47AfoBoYBFxhwbLj+lChsJMDuzf/7UcscxW5Q0ePNhyLQXcwIsXL1aNtUk2vhxybYwzln733XeLEiVKGA85+o717hi6ehWMDkK1xn369PElUCchIUG0anW7qi7CVcP1wPq+cC4Up2HDhq6CdBAPP3HiRJXHrbfeKsaOHad878aRgS4Ln9dcc4148MEHZUOQMfhk0qSJSsmhdNioA8t7g5UceSDvevXqSWWdIIe/1eQLuUhs3/4ZksIK5qLjx/9blClTRkyYMFENT1EeBJGRZcuWDZtH8AmwR6AnR2ODRUyjR482VXJch+nP/fc/oJQbPTkiDzHUj5bA64PnjWjSUAum0Aji3WzcuHHEquaLoqNH6N27j+tKYqg3fbr1vNpOxjt2fBEIITU7H/PLhg0bmSW5OoYeGQqPUQTmneEEDRDm05A2bdqGOz1DOob26MnxiYCSv//9ITUyyHCijQNffPFFoC5Dhgyx5T2Bgj7zzHDVQIXauMNYPAyEGNpino5oSD9kwoQJKjaievUa4qGHHrbFAG5UjHwgsC+4HUk4rX9KSlpEppsGzWlZ4c73RdFRSLiFJeEq8sEHa5TlNNx5ZunoUbHZo5WgNcfwzk/BvFi3wEuXLgubNXoTzGnx0DEPdiqbN29SlnU0LgMHDvI0/NSbb9Sv30DaRxrYrkqBAgUcrwtAb+bXi44RDf5hlDFgwABHDNq1axcIr8VUMRqSL1/aGozDh49Eo7iQZfim6Cgl1FLRkLWQiRjiwN2GT6eChRCw6loJet/ExHJWya6Pw8AD2bbtY5GSkhIyn2XL0laktW7dxnQ+HfJimagXEt1wQ/2w1uhQecF4tX37dnXKHXc4H1lAccN5BIzl43y/ZM2aNSqrGjVqyueZ6ChbNPZ6ugVPj93plqNCgk6uVau2OrJ+/Trx8ccfB6VG909fFR1WRcyb3Ap8oejZnQhcMrNmzbS8JH/+/KJHj3st070kVK1aVS1EwUsTamnpoUMHlTsOc2C4I92IXmZbp07G+baT/LD3H+qLOTIUxqlgRKHdbHau9XP5744daVtxY+riRjQ7jKxgGI20YJRbuXJlNd0aPvwZMWbMmIgFiYW7F18VHYWF284pXIUwV8ec3a7AqqpdLGbXwP3l1/zQLP+2bdN6xZUrVylLstk5y5en9ebwlZoZvMyuMR5DbIC+x9KlrzImOf5+/HjaxpglSpR0bZgsU+ZqW+ViZyK4u/wQNE7a9YYVbm6kVKnSgeG+zstNPnavwShixIh/CYzCUP/Vq98XgwYNlPasXiqWYteuXa5GsHbLN57nu6LDZwtXjVuB9R1WeDuCVhluCStBZFibNm2skn05joAUzF3Pnj0jsF98sKDR0kNON0Y45Ic89JQGyuNF9C/H5s3rPh+7jZW2sHupr74W7jjt1rNbvr5Wf2I0gn8Q+NqjIXg3nn32WflDns8p7wfsCzAGIr5h8OBHle0ILlo0BJEU3xUdlYU/Fq2nW4GxJNycF3lPmTIl8PDNykKkk36wZul+HMPqN7i6IGZGObhYML2AAc6tUcq4YaXXFzR37lyqrk5GTeoCw392r/XTX43niB4SYrd8Q5XVVzQUurFAcFA0pU6dutL3/4KcZr6ubFkY0kPp4ZkYO/YV8dhjQwT8/pGSiCg65n99+7p3tyGYI9SuMICBiKctWz6y5ALfb9269SzT/UyAgQ0vNSzCiMgyyvLlaRZ5t7058kIPljdvmv/Zq2sIPlsIGlL90qsDDv7zWgcHRQVOhZLrDULczq/hFtQ9Z8mSGeP3oXjOJc14bPdS3AOCthADMXnyZNVJ4N2BDeb5558PjNyc1yP0FRFRdBTZoEFDFbEVunjrVFhGEX5pJvAlI17cStD69+3rrzvNqiwcR0w2GhbIsmVL1Sf+++qrr9RGj4geRJCMW8ELqPfW1xZzt3npCDI0pm5+fgpTCK91cFt39IIQuwE7weUgFBaCNQClS6cfcYKx3ptAT2+Crzf7W5/rZoRQpkxZ8fDDj4hhw4aprBELEqkfSomYoqPm/fr1Dwy3zCCFOqbdbboFNp6LXjK45zSmw0CG+Xk0RbvasMhBP3zdm8Ot43UK0ajR39TtbNq0SYVyur03vOB6CoHNGJ0KFqwgZDMWovcPgMKeOHHcURXwHmnPSNOmTU1dnNhxCHLs2FHbeR89ekydW7y4+8hQPFtEMUL27NmrPv3+L6KKnih9ndp36abiWNano8n09Vi1pRcJ6GPGT/h4u3XrbjwUle/YBqq0tIgjEgyrlTAvh+8bCt6q1W2e6wC3HO4NEXaIO/ciOt5/3boPhXZZ2ckPc+OpU6fYOTUi5zRo0EA14BjRTZ5svd+AWeGId0fnAHsHVomZSVUZNw/Bnoh2BFMfHRUJV6sXgdEOAqNjJCSiio4K9+jRQ1ml3VZ+5sz0v64CJYcf1ErgM4fvPNqCoZ+28KOnhCsFioEFMIULWy8RtVtPzNP1dATTmmnTprqez7VseYta6IJREwxEoUZHun5oYEaOHKn8z162EdP5ufnEPF1HBW7dukUymGaLQdq5U1WReB91zx1cBx3jgMZv69atwckZ/l64cIFayYchv46SNJ6ETsmOoHPQm7BEaiQacUWHD7t7d/c9LDYp0AsRsKDBOAcOhliuXDlx223ee8/gfO3+jQ0t4P5ClB5WLUG8GOGCy8WLqHsjLGscNuyJkBGBmEJgRIQlrUaBwmDNNUYIcAs++ugjaliLntJMMJeHKwgK06JFC2mPqGt2WlSOwXuh11W8/fZ86boabvmjmRhVIS5jxIgRyvCIOAaszbcS7K+gI/lGjXpRLr/eYHoqOGGV5IwZM1R6585dTGM1Bg0aJMt/LeSCLVjaYYRDXdGAaluPacEeDiZ4uNb2pbBKIwT06NEjtq8xnohdY2G4wJzX6mXE+V5sAsby3H6H3xgvE3p0jDowdQn1wxJuyoHLEMYkRANiroqNGlBOpUqV5dLZwnLueYly06CX3rt3jxrqm4WsYsnuqFGjA4qCBTMYLWEKAtdoQsKlcl1/qvIk6PBi/NAFFpKEMoS6uSen12C1JIxfCJmGzQDhpeCMjS7QsWAkdfDgIemZ+UR9x2gLu/326tXbdG5uLB/3h+3BEaUJ33fZsokCO9Nitx3M80+eTFH56i3EEUfRuXPGtf4wdp45k6piQtAo4/lgeI/denLmTJDvx3nVi6PxRIOMERuW0BpdqcZ6ef0eFUXHPBUv6FNPPemqvpi3vPzymJDXYogcD1slowfHL8NAEE9gV9K2gEqbp+HFDCUdO3ZUVnyMdLDe+9ChQ+pf8DV4aRo3bmK5PTeMcpMm/Ue+jG+pX0bBem2z36fDcBKjsqZNm6ki0KBhTpk792XBRaq/8SIj3ekUCvet56rhfPC33367VMCassGbJQOVNql1/ljrHyzYBBTRmvi0I1A4NIB6Hfvhw4fk1OZQhkuxqAlLe9GJmT0vDOc1Wzyj3bt3qX/BGeE+4aHChh5ofCMlOeQ8zfkqEpe1efrpp2XrG37u4zR7+O2Tk1/1dW8zp3WI1fnovdD7YLSEXgKCHhxrwNHD2XX7YA6OuenBgwfkiOCcMiKiF8OecbAIm73Msbrn4HIxesLSW1jLMQTOlSu3cnlCub3sdwe2YIKG9Pz5c4oBRlP4oQ30zpgC2RGwxR6GYJuaekaOSn9TcRGlS5eSDVCNiG0fZaxbVBUdmw8+8MD9rgM1jBU3fsevrXjZftqYF7+TQFYkEHFjnBEaFiPoRSDG416+Y/+tLl26eMmC15JAlicQVUUHTfi4zYxDbkknJSUpQ4bb63kdCWQHAlFXdD/Xh2NzRLh7KCRAAqEJRF3RUR3s+AKftxeBccjLjjZeyua1JJDZCMRE0eFSgM/biyCwAbuSUkiABMITiImio1rwecP37Ubgo0TwA4UESMAegZgpOqrXp09fV9sZIYzRKl7Z3m3zLBLIXgRiqugIZtCx23axFytWXCAyjEICJGCfQEwVHdVEGKHZbh9Wt4BfHrEb7WWVB4+TQHYjEHNFh9L+85+PySF8rrDssQwUa5IpJEACzghENQQ2VNWw0gj7XmNZarDASo/FIlgYYze+ODgP/k0C2ZlA3Cg6HgKC/7FJHpYAYjkqFnHh52ixV5je1DA7PyzeOwm4JRBXiu72JngdCZBAaAIxn6OHrh5TSYAE/CBARfeDIvMggTgnQEWP8wfE6pEACZAACZAACZAACZAACZAACZAACZAACZAACZAACZAACZAACZAACZAACZAACZAACZAACZAACZAACZAACZAACZAACZAACZAACZAACZAACZAACZAACZAACZAACZAACZAACZAACZAACZAACZAACZAACZAACZAACZAACZAACZAACZAACZAACZAACZAACZAACZAACZAACZAACZAACZAACZAACZAACZAACZAACZAACZAACZAACZAACZBAHBH4P4MbsXyfcRzBAAAAAElFTkSuQmCC EMAIL: TEL;WORK;VOICE: TEL;WORK;FAX: ADR;WORK:;!;United States URL;WORK:注:Objectics和Vision综合基因概率模型和系统神经科学的洞察力后,我们的架构培训得更快、更容易适应并比当今常用AI方法广化end:VCARD