Case Studies
Case Study: Powder Metallurgy Inspection
发表于10/14/2021.
Overview
粉末冶金的过程允许大规模生产特定的小部件/零件,而无需接近零的生产材料。制备各种金属粉末或混合成适当的比例,或者可以使用与您的组件功能需求相匹配的预合金粉末。初始按压过程产生“紧凑”或所需部分的形式,但在该阶段,部件抑制了绿色强度,专为处理目的而设计。然后将紧凑的部件送至烧结炉,在熔点下方被加热,因此颗粒比以前更紧密地键合(更密集)以形成结构强度。烧结过程包括预热,高温(热区)和冷却区。为了确保正确的烧结,加热速率,最大烧结温度,在烧结温度下的时间,冷却速率和炉气氛的时间必须紧密地控制和监测,或者,可以为成品发生缺陷。这是粉末冶金产品检测的地方。
Problem-solving
Slow inspection rate and worker availability
粉末冶金的过程允许大规模生产特定的小部件/零件,而无需接近零的生产材料。制备各种金属粉末或混合成适当的比例,或者可以使用与您的组件功能需求相匹配的预合金粉末。初始按压过程产生“紧凑”或所需部分的形式,但在该阶段,部件抑制了绿色强度,专为处理目的而设计。然后将紧凑的部件送至烧结炉,在熔点下方被加热,因此颗粒比以前更紧密地键合(更密集)以形成结构强度。烧结过程包括预热,高温(热区)和冷却区。为了确保正确的烧结,加热速率,最大烧结温度,在烧结温度下的时间,冷却速率和炉气氛的时间必须紧密地控制和监测,或者,可以为成品发生缺陷。这是粉末冶金产品检测的地方。
Human inspection consistency/ accuracy
这re are multiple stages where the powder metallurgy process may cause varying degrees of defects on the finished product. With the high production volume, the ability to consistently and accurately pick out the defects by the human is often affected by one’s objectivity on what is considered to be a defect and fatigue after long work hours.
自动检查部署环境挑战
实施自动检验的思想来到了思想,但立即满足了从机器的冲击和振动等环境挑战,高温和金属粉末在空气中分散在电脑底盘。
问题解决了
通过实施机器检测(软件+ NeoSys嵌入式计算机)解决方案,它解决了对高批量的工人进行检查的需求。机器检测解决方案利用aNuvo-8023 box PCwith frame grabber expansion cards. TheNuvo-8000 series computers有专利减震支架承受shock and vibration which is MIL-STD-810G certified; true fanless design to avoid metal powder dust accumulation inside the chassis; and proven to sustain optimal operation up to 60°C without performance degradation. Connected it to PoE cameras, coupled with appropriate lighting, lighting controller for high-speed image capture and detection software algorithm, it can detect indents, protrusions, discolorations, press marks, scratches, etc. The recognized and distinguished defects are saved into the existing database for the system to learn and reference from for better consistency and accuracy.
这machine inspection solution also offers superior productivity. The volume inspected per day can reach up to 86 thousand samples with an inspection time of 1 second per sample, compared to approximately 4000 sample inspections per worker, per day.
随着缺陷/非缺陷图像的不断增加的数据库,从而从,每次扫描样本时,系统都会继续加强其一致性和准确性。这是机器学习检验的原因之一,也一致地在继续向现有数据库添加数据时持续地提高准确率。至于一致性,与可能经历疲劳,偏见的人类检查员,偏见或受各种工人的不同视觉能力有限的人,与适当的照明相结合的机器视觉相机可以无偏见,始终如一地检查24/7。考虑到更好的一致性,准确性和生产力,投资机器学习检查对粉末冶金的优势超过了成本,从长远来看。
Learn more about Neousys embedded box pc here:https://www.neousys-tech.com/en/industrial-wide-temp-rugged-embedded-box-pc.